Discourse-Based Objectives for Fast Unsupervised Sentence Representation Learning

نویسندگان

  • Yacine Jernite
  • Samuel R. Bowman
  • David Sontag
چکیده

This work presents a novel objective function for the unsupervised training of neural network sentence encoders. It exploits signals from paragraph-level discourse coherence to train these models to understand text. Our objective is purely discriminative, allowing us to train models many times faster than was possible under prior methods, and it yields models which perform well in extrinsic evaluations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Unsupervised Discovery of Discourse Relations for Eliminating Intra-sentence Polarity Ambiguities

Polarity classification of opinionated sentences with both positive and negative sentiments1 is a key challenge in sentiment analysis. This paper presents a novel unsupervised method for discovering intra-sentence level discourse relations for eliminating polarity ambiguities. Firstly, a discourse scheme with discourse constraints on polarity was defined empirically based on Rhetorical Structur...

متن کامل

Exploring Asymmetric Encoder-Decoder Structure for Context-based Sentence Representation Learning

Context information plays an important role in human language understanding, and it is also useful for machines to learn vector representations of language. In this paper, we explore an asymmetric encoder-decoder structure for unsupervised context-based sentence representation learning. As a result, we build an encoderdecoder architecture with an RNN encoder and a CNN decoder. We further combin...

متن کامل

Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies

Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...

متن کامل

Learning Distributed Representations of Sentences from Unlabelled Data

Unsupervised methods for learning distributed representations of words are ubiquitous in today’s NLP research, but far less is known about the best ways to learn distributed phrase or sentence representations from unlabelled data. This paper is a systematic comparison of models that learn such representations. We find that the optimal approach depends critically on the intended application. Dee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.00557  شماره 

صفحات  -

تاریخ انتشار 2017